
A Novel Data Structure for Particle System Simulation based on GPU with
the Use of Neighborhood Grids

Mark Joselli
Jose Ricardo Silva Junior

Marcelo Zamith
Esteban Clua

MediaLab, IC-UFF

Eduardo Soluri
Nullpointer Tecnologia

Abstract

Simulation and visualization of particles in real-time can be a com-
putationally intensive task. This intensity comes from diverse fac-
tories, being one of them is the O(n2) complexity of the traversal
algorithm, necessary for the proximity queries of all pair of parti-
cles that decide the need to compute collisions. Previous works re-
duced this complexity by considerably factors, using adequate data
structures for spatial subdivision and parallel computing on mod-
ern graphic hardware, achieving interactive frame rates in real-time
simulations. However, the performance of existent proposals are
heavily affected by the maximum density of the spatial subdivision
cells, which is usually high, yet leading to algorithms that are not
optimal. In this paper we apply a novel data structure, which is
called neighborhood grid, and a simulation architecture that pro-
vides for extremely low parallel complexity. Also, we compared
this work with the traditional spatial hashing achieving a speedup
up to 9.5 with a similar visual experience and with lesser use of
memory.

Keywords:: Particle Simulation, Real-Time Simulation, GPGPU,
Data Structure, Cellular Automata.

Author’s Contact:

{mjoselli, jricardo, mzamith, esteban}@ic.uff.br
esoluri@nullpointer.com.br

1 Introduction

The increase of the level of realism in virtual simulation depends
not only on the enhancement of modeling and rendering effects,
but also on the improvement of different aspects such as animation,
artificial intelligence of the characters and physics simulation.

GPUs are a collection of SIMD (Single Instruction Multiple Data)
processors designed to run streamed graphics pipelines, a computa-
tion model where the processing of each pixel is independent of the
others and usually requires localized memory reads (texture fetch-
ing). There are rules of thumb to create efficient streamed applica-
tions, where, the most important one is to organize the data streams
in a way that maximizes memory read performance based on local-
ity. These rules tend to result in a more efficient usage of available
cache memory and read ahead mechanisms of these devices. We
use these strategies in the simulation system proposed in the present
paper.

This paper addresses different issues related to the problem of im-
plementing a particle system on the GPU in a multithread archi-
tecture. The relevance and importance of transferring some of the
physics computation to the GPU is in the fact that it makes possi-
ble to take out part of the load of the CPU, allowing it to process
some other tasks like artificial intelligence and physics simulation
optimizations.

In order to solve the collision detection between the particles, a
neighborhood gathering algorithm is needed. The naive approach
of such algorithm has complexity of O(n2 ), since it has to process
each particle against all the other particles. Most of the research
on particle systems tries to avoid the high complexity of proximity
queries by applying some form of spatial subdivision to the envi-
ronment and classifying particles among the cells based on their
position. To accelerate data fetching in a parallel hardware (such

as GPUs) the particles’ list must be sorted in a way that all parti-
cles on the same cells are grouped together. This approach helps
lowering the number of proximity queries but is very sensible to
the maximum number particles that can fit in a single cell. In this
work instead of using a similar approach, we propose a novel sim-
ulation architecture that maintains the particles into another kind of
proximity based data structure, which we call neighborhood grid.
In this data structure, each cell now fits only one particle and does
not directly represent a discrete spatial subdivision. The neighbor-
hood grid is an approximate representation of the system of neigh-
borhoods of the environment that maps the N-dimensional environ-
ment to a discrete map (lattice) with N dimensions, so that particles
that are close in a neighborhood sense appear close to each other in
the map. Another approach is to think of it as a multi-dimensional
compression of the environment that still keeps the original position
information of all particles.

The particles are simulated and sorted as Cellular Automata with
Extended Moore Neighborhood [Sarkar 2000] over the neighbor-
hood grid, which is an ideal case for the memory model of GPUs.
We argue and show that this approximate simulation technique
brings a new bound to particle simulation performance, maintaining
the believability for entertainment contexts. The high performance
and scalability are achieved by a very low parallel complexity of
the model.

To illustrate and evaluate the architecture, we implement a parti-
cle system that has a speedup of up to 9.5 over the tradition spa-
tial hashing methods [nVidia 2007b; Microsoft 2007; Kipfer et al.
2004] , with similar visual experience. The architecture can be fur-
ther extended to any other simulation model that rely on dynamic
autonomous entities and neighborhood information.

Paper summary: The remainder of this paper is organized as fol-
lows. Section 2 presents a set of GPGPU concepts. Section 3
presents some related works on GPGPU that can be applied to game
physics and we describe the neighborhood grid data structure, in
Section 3. The particle system used in this work is presented in
Section 5. In Section 4 we describe our novel simulation archi-
tecture on GPUs and acceleration data structures employed in the
simulations. In Section 5 we show the results and, in Section 6, the
conclusions and some considerations are presented.

2 Related Work

There are a lot of works that deals with the GPGPU field, but the
application of these works on game fields are mostly concentrated
on the game physics, which particle systems are a simplification of
it. Physics on the GPU is a potential field and many works achieve
considerable speedup by taking the physics calculations from the
CPU and processing on the GPU. All the major physics engines for
games available in the market had made, or are making, attempts to
use of the GPU to process its calculations.

The work of Green [Green 2007] presents an implementation on
the GPU of some methods of the commercial physics engine called
Havok FX, which was being constructed to be a GPGPU version
of Havok Physis [Havok 2009]. The Havok FX was discontinued
when Havok was bought by Intel, but there has been some physics
presentation with the use of OpenCL [Hensley et al. 2010]. Several
other examples can be found in the literature. PhysX of nVidia
[nVidia 2009b] is a physics engine that uses the CUDA architecture
to optimize its calculation [Harris 2009]. Bullet [Coumans 2009],
an open source physics engine, is also investing in porting it to the



GPU and has release some demos with some aspects of the engine
running on the GPU. Also in [Joselli et al. 2009] a hybrid physics
engine that has some of its calculations on the GPU is present.

Physics simulation works very well on the GPU because of the
high performance of the stream processors, which allows high par-
allelism of the physics problems that can be solved in this structure.
With that, it is possible to have faster physics simulation on games,
and also more physics realistic games.

All the works using rigid body dynamic, similar to this work, uses
some form of spatial subdivision in order to optimize the neighbor-
hood gathering for the calculation of the collision detection. By
using the spatial hash to classify the bodies into a grid, the prox-
imity query algorithm can be performed against a reduced number
of pairs. For each particle, only those inside the same grid cell and
at adjacent ones, depending on its position, were considered. This
strategy leads to a sequential complexity that is closer to O(n).
This complexity, however, is highly dependent on the maximum
density of each grid cell, which can be very high if the simulated
environment is large and dense. We remark that the complexity of
our neighborhood grid is not affected by the size of the environment
or the distribution of the particles over it. This neighborhood grid
has already been used in a crowd simulation scenario with great
success [Passos et al. 2010] (a minimum speed up of four times
over the traditional spatial hashing).

3 Neighborhood Grid

The proposed data structure was developed to be used with a
GPGPU architecture, based on CUDA [nVidia 2007c] and OpenCL
[Group 2009], and, in order to keep the processing entirely at the
GPU, all information about particles are mapped as textures for the
display-list and vertex shader rendering. This information is stored
in 3D arrays (the neighborhood grids), where each position holds
the entire data for an individual particle. In this data structure, each
cell fits only one particle. Figure 1 illustrates how a randomly dis-
tributed set of particle would be arranged in the neighborhood grid
when correctly sorted. The smaller circles represent particles that
are further away from the viewpoint.

Figure 1: An example of a distribution of the particles in the neigh-
borhood grid. Small circles illustrate particles that are further
away from the viewpoint.

In this work we use a neighborhood gathering algorithm known
as Extended Moore Neighborhood [Sarkar 2000] that is used in
the Cellular Automata theory. Figure 2 illustrates this structure
using a 2D matrix holding arbitrary information for 36 individual
particles. To reduce the cost of proximity queries, each particle only
gather information about the particles surrounding its cell, based on
a constant search radius. In the example of Figure 2, we chose the
radius to be 2, so the particle entity represented at cell (2,2) (in
light gray) would have access to the 24 highlighted surrounding
cells (represented in dark gray).

This kind of spatial data structure with extremely regular informa-
tion gathering enables a good prediction of the performance, since
the number of proximity queries will always be constant over the
simulation. This happens because instead of making these proxim-
ity queries over all particles inside a coarse grid bucket/cell (vari-

Figure 2: Example of the Structure of the Extended Moore Neigh-
borhood with 36 particles and radius = 2.

able quantity), such as in traditional implementations, each particle
would query only a fixed number of surrounding individual neigh-
bors. However, this grid/matrix has to be sorted continually in such
a way that those entities, which are neighbors in geometric space
are stored in individual cells that are close in the neighborhood grid.
This guarantees that each particle should gather information only
about its closest neighbors. During the simulation (and depending
on the sorting step), some misalignment may occur over the data
structure causing that some of the neighbor particles are missed by
the gathering step. However, the larger the gathering radius is, less
likely it is to happen such issue, as we will observe latter when we
present our experiments.

Since in this work the simulation of each particle is mapped to one
GPGPU thread for both the sorting and simulation steps, it is im-
portant to mention that the grids are double buffered; consequently
each of these tasks does not write data over the input structures that
can still be read by the other parallel GPGPU threads. This work
could also use atomic operations for the grid operations, but these
kind of operation is still very costly for massive simulations.

The position information of each particle is used to perform a lex-
icographical sort based on the three dimensions coordinate of the
vector. The goal is to store in the closer-bottom-left cell of the
grid the particle with the smaller values for Z, Y and X, and in the
far-top-right cell the particle with highest values of Z, Y and X re-
spectively. Using these three values to sort the grid, the farthest
lines will be filled with the rigid particle with the higher values of Z
while the top lines will be filled with the particles with higher values
of Y and the right columns will store those with higher values for
X and so on. This kind of sorting provides data for the approximate
neighborhood query, which is optimal in terms of data locality.

Our proposed architecture is independent of the sorting algorithm
used, as long as the rules above are always, eventually or even par-
tially achieved during simulation, depending on the desired neigh-
borhood precision. In this work we use a bitonic sort [Batcher
1968], which makes a full sort in each dimension.

The bitonic sort [Batcher 1968] is a simple parallel sorting algo-
rithm that is very efficient when sorting small number of elements
[Blelloch et al. 1998], which is our case since our sort strategy is
divided by dimensions. Our implementation is an optimized and
adapted version based on a previous work of nVidia [nVidia 2007a].
This sort is divided in 3 passes, one for each dimension (X,Y and
Z).



4 Architecture environment

Our proposed architecture implements a particle system using a
novel GPU computing solution, based at the neighborhood grid data
structure, allowing a high performance increase during simulation.

The proposed architecture is based on particle systems like the ones
presented in [nVidia 2007b; Microsoft 2007; Kipfer et al. 2004] and
in a hybrid physics engine [Joselli et al. 2009].

The loop of the proposed physics engine is responsible for: Detect-
ing collisions in two phases: a broad phase (with the neighborhood
grid) and a narrow phase; Applying the external forces on the parti-
cles, like the gravity force; Forwarding the simulation step for each
particle by computing the new position and velocities according to
the forces and the time step, i.e., integrating the equations of mo-
tion.

At the beginning, the architecture sort all particles according to its
position in the 2 or 3 axis, depending if its a grid or matrix. The
sorted particles gather its neighborhoods according to the radius and
calculate its collisions. Based on these results, the system calculates
the result forces at the particles and add any external forces that
may be influencing it, such as gravity and users’ input. Finally the
system calculates the new velocity and positions, integrating the
whole system.

The proposed architecture is built in a way such that it can be used,
with proper modifications, with games. It was implemented us-
ing the following technology: CUDA [nVidia 2009a] for GPGPU
processing; OpenGL for rendering; GLSL (OpenGL Shading Lan-
guage) for shaders; and GLUT (OpenGL Utility Toolkit) for win-
dow creation and input gathering. But the concepts presented here
could also be adapted to others technologies.

The data that is exchanged between the CPU and GPU is encapsu-
late in a special structure, in order to keep the communication be-
tween the CPU and the GPU to a minimum, since this process can
be a bottleneck of any simulation that has communication between
CPU and GPU [Krueger 2008].

Neighborhood Gathering or the broad phase of the collision de-
tection: Each of the particles needs to find its neighborhood bod-
ies for calculating its collisions. This operation has complexity of
O(n2) for a collection of n particles using a brute force method,
which is very time consuming, even for a small set of particles. To
avoid this time complexity, this paper employs the neighborhood
grid/matrix data structure presented in Section 3.

The narrow phase of the collision detection: The narrow phase
of the collision detection is responsible for doing the actually col-
lision detection among the particles. In this work, instead of doing
the collision check between all the polygons of the entities, it is im-
plemented a basic primitive area element, that complex models are
put inside.

The bounds are used to surround every model, simplifying the nar-
row phase of the collision detection. Two types of bounds were
implemented: a circle bound and a bounding rectangle.

Integration: After fluid’s forces are computed, it’s necessary to
integrate the particles velocity and position. This method is respon-
sible for integrating the equations of motion of a particle [Eberly
2004]. This method updates the particle velocity based on the
forces that are applied to it, which are sent to the integrator, and then
it updates the position based on its velocities, using a method based
on Euler integration (this approach is one of the simplest forms of
integration) using a finite time step.

5 Results

This section presents the results obtained from our proposed archi-
tecture. We used a PC equipped with an Intel Core 2 Duo 2.66GHz
using 2 GB of RAM and a NVidia GTX480. Simulations tests with
different configurations were performed. . An screenshot of the
simulation can be seen in Figure 3.

Figure 3: Screenshot of the Simulation.

To evaluate the scalability of the architecture, we varied the number
of particles being simulated (from 1 thousands to 262 thousands)
with the Moore neighborhood radius set to 4. In order to full eval-
uate the speedup of this architecture for particles systems over the
traditional spatial hashing method, we have implemented the spatial
hashing scheme in GPU with the use of CUDA.

In Table 1 we present the results of different simulation configura-
tions, varying the number of particles using the neighborhood grid
method and the spatial hashing method. In both methods, all pro-
cessing is done in the GPU. The time was take by the architecture
to process and render one frame of the application in miliseconds.
Speedup is defined by the relation S = X1

Y2
, being X1 the time

for the Neighborhood Grid and Y2 the time for the Spatial Hash.
As expected, the simulation using our neighborhood grid method
presents the better result than the simulation using the traditional
spatial hashing.

Table 1: Scalability of the Simulation when using the Spatial Hash
and the Neighborhood Grid.

Particles Uniform Grid Neighborhood Grid Speedup
1,024 0.426 0.419 1.18
2,048 0.450 0.435 1.03
4,096 0.559 0.539 1.04
8,192 0.835 0.743 1.12

16,384 1.01 0.892 1.13
32,768 1.631 1.305 1.25
65,536 4.608 2.092 2.20
131,072 17.54 3.636 4.82
262,144 83.33 8.772 9.5

Figure 4 shows the same results of table 1 in a graphic. From this,
we can better see that our architecture is faster for particles systems
and scales better than the spatial hashing.

6 Conclusion and Future works

In this paper we have shown an extension of a novel technique for
simulating particles systems in real time using the GPU. This ar-
chitecture is capable of interactively simulating and rendering up to
200,00 bodies in real time frame rate, while the traditional spatial
hashing methods barely maintains interactivity in the simulation.
Moreover, with our architecture and bitonic sort, configured with
a radius of 4, we experience a similar visual simulation as with
the spatial hashing method with expressive speedup. The authors



Figure 4: Evolution of the Simulation in milliseconds in a log2
scale.

of this work suggest using this configuration to achieve best visual
and performance for simulating particle systems.

As presented by the results, performing particle system simulation
using the neighborhood grid method increases simulation perfor-
mance, obtaining a speedup of more than 9 times over the tradi-
tional spatial hashing simulation.

References

BATCHER, K. E. 1968. Sorting networks and their applications. In
AFIPS ’68 (Spring): Proceedings of the April 30–May 2, 1968,
spring joint computer conference, ACM, New York, NY, USA,
307–314.

BLELLOCH, G. E., PLAXTON, C. G., LEISERSON, C. E., SMITH,
S. J., MAGGS, B. M., AND ZAGHA, M. 1998. An experimental
analysis of parallel sorting algorithms. Tech. rep.

COUMANS, E., 2009. Bullet physics library. Disponvel em:
http://www.bulletphysics.com.

EBERLY, D. H. 2004. Game Physics. Morgan Kaufmann.

GEORGII, J., ECHTLER, F., AND WESTERMANN, R. 2005. Inter-
active simulation of deformable bodies on gpu. In Proceedings
of Simulation and Visualization 2005, 247–258.

GOVINDARAJU, K. N., REDON, S., LIN, M. C., AND
MANOCHA, D. 2003. CULLIDE: interactive collision detection
between complex models in large environments using graphics
hardware. In Graphics Hardware 2003, 25–32.

GREEN, S., 2007. Gpgpu physics. Siggraph07 GPGPU Tutorial.

GROUP, K. 2009. Opencl - the open standard for parallel pro-
gramming of heterogeneous systems. Tech. rep., Avalible at:
http://www.khronos.org/opencl/. 20/12/2010.

HARRIS, M., 2009. Cuda fluid simulation in nvidia physx. Sig-
graph Asia 2009: Beyond Programmable Shading course.

HAVOK, 2009. Havok physics. Avalible at:
http://www.havok.com/content/view/17/30/.

HENSLEY, J., GERSTMANN, D., AND YANG, J. 2010. Physical
and graphical effects in opencl by example: (copyright restric-
tions prevent acm from providing the full text for this article).
In ACM SIGGRAPH ASIA 2010 Courses, ACM, New York, NY,
USA, SA ’10, 11:1–11:1.

JOSELLI, M., CLUA, E., MONTENEGRO, A., CONCI, A., AND
PAGLIOSA, P. 2008. A new physics engine with automatic pro-
cess distribution between cpu-gpu. Sandbox 08: Proceedings of
the 2008 ACM SIGGRAPH symposium on Video games, 149–
156.

JOSELLI, M., ZAMITH, M., CLUA, E., MONTENEGRO, A.,
LEAL-TOLEDO, R., CONCI, A., PAGLIOSA, P., VALENTE, L.,
AND FEIJÓ, B. 2009. An adaptative game loop architecture with
automatic distribution of tasks between cpu and gpu. Comput.
Entertain. 7, 4, 1–15.

KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
flow: a gpu-based particle engine. In Graphics Hardware 2004,
115–122.

KRUEGER, J. 2008. A gpu framework for interactive simulation
and rendering of fluid effects. IT - Information Technology 4,
(accepted).

MICROSOFT, 2007. Advanced particles. Siggraph 2007: Real-
Time Rendering in 3D Graphics and Games course.

NVIDIA. 2007. Bitonic sort demo. Tech. rep., Avalible at:
http://www.nvidia.com/content/cudazone/cuda
sdk/Data-Parallel Algorithms.html#
bitonic.

NVIDIA. 2007. Cuda particles. Tech. rep., Avalible at:
http://developer.download.nvidia.com/
compute/cuda/1 1/Website/projects/
particles/doc/particles.pdf. 20/02/2008.

NVIDIA. 2007. Nvidia cuda compute unified device ar-
chitecture documentation version 1.1. Tech. rep., Avalible at:
http://developer.nvidia.com/object/cuda.html.
20/12/2007.

NVIDIA, 2009. Nvidia cuda compute unified device ar-
chitecture documentation version 2.2. Avalible at:
http://developer.nvidia.com/object/cuda.html.

NVIDIA, 2009. Physx. Avalible at:
http://www.nvidia.com/object/
nvidia physx.html. 20/02/2009.

PASSOS, E. B., JOSELLI, M., ZAMITH, M., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJO, B. 2010. A bidi-
mensional data structure and spatial optimization for supermas-
sive crowd simulation on gpu. Comput. Entertain. 7 (January),
60:1–60:15.

SARKAR, P. 2000. A brief history of cellular automata. ACM
Comput. Surv. 32, 1, 80–107.


